Vai al contenuto principale
Oggetto:
Oggetto:

DEVELOPMENTAL NEUROBIOLOGY

Oggetto:

DEVELOPMENTAL NEUROBIOLOGY

Oggetto:

Academic year 2023/2024

Course ID
SVB0064
Teacher
Silvia De Marchis (Coordinator)
Degree course
Cellular and Molecular Biology
Year
1st year
Teaching period
Semester 2
Type
Distinctive
Credits/Recognition
6
Course disciplinary sector (SSD)
BIO/06 - comparative anatomy and cytology
Delivery
Formal authority
Language
English
Attendance
Lessons optional and laboratories mandatory
Type of examination
Written and interview (optional)
Oggetto:

Sommario del corso

Oggetto:

Course objectives

This teaching contributes to the learning objectives included into the Neurobiological curriculum of the Master in Cellular and Molecular Biology - Biologia Cellulare e Molecolare, providing knowledge and applicative abilities. 

The main objective is to guide students to understand the genesis of the complexity of the nervous system, by developing research skills and critical readings of scientific papers dealing with different aspects of neural development. Through the analysis of the most recent literature based on different animal and in vitro models, the students will acquire knowledge on the principles and  cellular/molecular mechanisms  underlying normal development of the nervous system, as well as the neurobiological  bases of neurodevelopmental disorders. 

Oggetto:

Results of learning outcomes

KNOWLEDGE AND UNDERSTANDING

  • identify  fundamental concepts in developmental biology 
  • use appropriate terminology in developmental biology
  • explain the principles of  neural induction (molecular mechanisms and conservation among metazoa)
  • associate specific genes to acquisition of regional identity in the developing nervous system
  • define what is an organizing center in developing brain and provide examples
  • describe the cellular/molecular mechanisms underlying  neural circuit development
  • identify the features and potential of neural stem/progenitors cells and define their regulation by cell-autonomous vs non autonomous factors.
  • link specific cellular/molecular dysfunctions to neurodevelopmental disorders

 APPLYING KNOWLEDGE AND UNDERSTANDING

  • identify the best  model systems to address specific scientific questions in developmental neuroscience 
  • grasp the core concept of a scientific paper 
  • find and elaborate data related to gene expression/distribution in the developing nervous system starting from public availabe resources (i.e. Allen Brain Atlas)
  • find possible experimental approaches and choose the right technology to address specific questions in the field of developmental neuroscence
  • write a research project 

INDEPENDENT JUDGEMENT

  • interpretation and discussion of scientific data.
  • peer revision of other students tasks 

COMMUNICATION SKILLS

  • presentation of scientific papers and/or active participation to scientific discussion following lectures and seminars. 
  • presentation of a research project.
  • writing of short reports on scientific papers.

LEARNING SKILLS

  • learning skills will be fostered through activities with peers working in group 
Oggetto:

Program

This year, a module of the course will be given by the Visiting Professor Michèle Studer (Institute de Biologie Valrose, Université Côte d'Azur, Nice), an internationally recognized specialist in the field of neural development, and expert in cortical development. 

Program

Introduction and basic knowledge in developmental biology; animal models, in vitro models and technologies for the study of nervous system development; neural induction, derivation of the nervous system in different metazoa, origin, role and molecular nature of the neural inducer; neural patterning, Hox genes and antero-posterior axis, dorso-ventral polarity of the neural tube; Cell proliferation and migration in the developing nervous tissue; Neural cell specification, determination and differentiation; Axon growth and guidance; Cerebral cortex development; Adult neurogenesisParticular emphasis will be given to new emerging technologies that can be applied synergistically to study any cell-tissue system development, such as single cell profiling, spatial transcriptomics, immunofluorescence and 3D imaging of optically cleared organs.

Oggetto:

Course delivery

During the course, the students will be weekly guided to understand specific topics related to the main questions and established knowledge in the field of neurodevelopmental research through in classroom lectures and seminars, interactive group work, discussion time.  Readings of scientific articles and online activities on moodle platform will be assigned to the students and monitored by the teacher. 

All lectures will be delivered in presence, subject to updates on the measures adopted by UniTo which can be found on the University portal under "Provisions for those who study and work at UniTo" (see https://en.unito.it/studying-unito)

 

Oggetto:

Learning assessment methods

The tasks and activities during the course, as well as the overall engagement of the students, will be evaluated (30% weight on the final grade).

The final exam will be on the Moodle platform and will consist of 10 closed questions and 2 open questions based on topics covered in lectures, assigned readings, and online activities, followed by an optional oral examination (70% weight on the final grade).

Active participation in the tasks and activities in class is highly recommended. Students who, for any reason, do not participate in at least 70% of the proposed activities will have to contact the professor to agree on alternative compensation.

The final learning assessment will be in written form (on Moodle platform) with optional oral integration.

Exams will take place in presence, subject to updates on the measures adopted by UniTo which can be found on the University portal under "Provisions for those who study and work at UniTo" (see https://en.unito.it/studying-unito)
 
Academic conduct: The penalty for course-related dishonesty (ei. cheating on exams, plagiarism, etc) will be a failure for the entire course.

IMPORTANT: Early registration to the e-learning platform (moodle) is mandatory !

Oggetto:

Support activities

Supplementary activities and material

  1. selected readings provided on the Moodle platform;
  2. online exercises for self-evaluation provided on the Moodle platform;
  3. external in-depth videos on specific topics uploaded to the Moodle platform.

 

All the video-lectures, rslides, selected papers and websites are fully available on Moodle.

Suggested readings and bibliography

Oggetto:

There is no specific textbook for this course. For basic and general reference, see Development of the Nervous System (D.H. Sanes, T.A. Reh, W. A. Harris) Academic Press - Elsevier, 4th Ed.

Specific scientific Articles and Reviews will be uploaded on the Moodle course website.

Websites containing support videos, texts, images and other materials are also indicated.



Oggetto:

Class scheduleV

Lessons: from 05/03/2019 to 14/06/2019

Notes: See the timetable at the Class Schedule Page

Enroll
  • Open
    Oggetto:
    Last update: 19/10/2023 10:45
    Non cliccare qui!