Vai al contenuto principale
Coronavirus: aggiornamenti per la comunità universitaria / Coronavirus: updates for UniTo Community
Oggetto:
Oggetto:

DEVELOPMENTAL NEUROBIOLOGY

Oggetto:

DEVELOPMENTAL NEUROBIOLOGY

Oggetto:

Academic year 2021/2022

Course ID
SVB0064
Teacher
Prof. Silvia De Marchis (Coordinator)
Degree course
Cellular and Molecular Biology
Year
1st year
Teaching period
Semester 2
Type
Distinctive
Credits/Recognition
6
Course disciplinary sector (SSD)
BIO/06 - anatomia comparata e citologia
Delivery
Blended
Language
English
Attendance
Lessons optional and laboratories mandatory
Type of examination
Written and interview (optional)
Prerequisites
Basic knowledges of developmental biology and citology/histology of the nervous system.
Oggetto:

Sommario del corso

Oggetto:

Course objectives

This teaching contributes to the learning objectives included into the Neurobiological curriculum of the Master in Cellular and Molecular Biology - Biologia Cellulare e Molecolare, providing knowledge and applicative abilities. 

The main objective is to guide students to understand the genesis of the complexity of the nervous system, by developing research skills and critical readings of scientific papers dealing with different aspects of neural development. Through the analysis of the most recent literature based on different animal and in vitro models, the students will acquire knowledge on the principles and  cellular/molecular mechanisms  underlying normal development of the nervous system, as well as the neurobiological  bases of neurodevelopmental disorders. 

Oggetto:

Results of learning outcomes

KNOWLEDGE AND UNDERSTANDING

  • identify  fundamental concepts in developmental biology 
  • use appropriate terminology in developmental biology
  • explain the principles of  neural induction (molecular mechanisms and conservation among metazoa)
  • associate specific genes to acquisition of regional identity in the developing nervous system
  • define what is an organizing center in developing brain and provide examples
  • describe the cellular/molecular mechanisms underlying  neural circuit development
  • identify the features and potential of neural stem/progenitors cells and define their regulation by cell-autonomous vs non autonomous factors.
  • link specific cellular/molecular dysfunctions to neurodevelopmental disorders

 APPLYING KNOWLEDGE AND UNDERSTANDING

  • identify the best  model systems to address specific scientific questions in developmental neuroscience 
  • grasp the core concept of a scientific paper 
  • find and elaborate data related to gene expression/distribution in the developing nervous system starting from public availabe resources (i.e. Allen Brain Atlas)
  • find possible experimental approaches and choose the right technology to address specific questions in the field of developmental neuroscence
  • write a research project 

INDEPENDENT JUDGEMENT

  • interpretation and discussion of scientific data.
  • peer revision of other students tasks 

COMMUNICATION SKILLS

  • presentation of scientific papers and/or active participation to scientific discussion following lectures and seminars. 
  • presentation of a research project.
  • writing of short reports on scientific papers.

LEARNING SKILLS

  • learning skills will be fostered through activities with peers working in group 
Oggetto:

Course delivery

During the course, the students will be weekly guided to understand specific topics related to the main questions and established knowledge in the field of neurodevelopmental research through in classroom lectures and seminars, interactive group work, discussion time.  Readings of scientific articles and online activities on moodle platform will be assigned to the students and monitored by the teacher. 

Due the COVID-19 health emergency, for the academic year 2021-22 lessons and all other live activities will be both delivered in a classroom (except in case of sanitary restriction) and over the Internet in live streaming through a WebEx Virtual Room; lessons and seminars will be also recorded and made accessible on the Moodle teaching platform, together with all other teaching material
Oggetto:

Learning assessment methods

Tasks and activities proposed during the course will be evaluated and will points (or fractions of points) to be  added to the final grade.

The final exam will be on the moodle platform: it will consist in 10 closed questions and 2 open questions based on topics covered in lectures, assigned readings, and online activities, followed by an oral examination (optional).

The final learning assessment will be held in presence, in written form (Moodle platform) with optional oral integration. Students belonging to specific categories will be allowed to participate in online written exams (webex platform), followed by an oral exam.

IMPORTANT: Early registration to the e-learning platform (moodle) is mandatory !

Oggetto:

Program

This year, a module of the course will be given by the Visiting Professor Paolo Giacobini (Inserm U1172), an internationally recognized specialist in the field of neural development, and expert in the development of the GnRH system in rodents and humans.

Program

Introduction and basic knowledge in developmental biology; animal models, in vitro models and technologies for the study of nervous system development; neural induction, derivation of the nervous system in different metazoa, origin, role and molecular nature of the neural inducer; neural patterning, Hox genes and antero-posterior axis, dorso-ventral polarity of the neural tube; Cell proliferation and migration in the developing nervous tissue; Neural cell specification, determination and differentiation; Axon growth and guidance; Cerebral cortex development; Adult neurogenesis; Development of GnRH neurons, the full repertoire of molecular cues regulating their migratory process and the precise targeting of these cells to the hypothalamus. Particular emphasis will be given to new emerging technologies that can be applied synergistically to study any cell-tissue system development, such as single cell profiling, spatial transcriptomics, 2D mass cytometry, cyclic immunofluorescence and 3D imaging of optically cleared organs.

Suggested readings and bibliography

Oggetto:

There is no specific textbook for this course. For basic and general reference, see Development of the Nervous System (D.H. Sanes, T.A. Reh, W. A. Harris) Academic Press - Elsevier, 4th Ed.

Specific scientific Articles and Reviews will be uploaded on the Moodle course website.

Websites containing support videos, texts, images and other materials are also indicated.



Oggetto:

Class schedule

Lessons: dal 05/03/2019 to 14/06/2019

Notes: See the timetable at the Class Schedule Page

Oggetto:
Last update: 06/06/2022 15:40
Non cliccare qui!